
The MINOS Midad Mini-Framework

B. Viren, BNL

May 20, 2004

Abstract

The Minos Interactive Data Analysis and Display (Midad) mini-framework
provides a way for users to display MINOS data and Monte Carlo in the
context of the larger Offline Software framework. There exists pre-written
displays as well as hooks at various levels for users to create and add their
own displays. This documents the use and internals of this framework.

1 Introduction

This documents the use and extension of the Minos Interactive Data Analysis
and Display (Midad) mini-framework. It assumes the reader is familiar with
using and programming in the MINOS Offline Software Framework, proper,
but an attempt is made to not rely on obscure details.
The Midad mini-framework provides the user a method to display MINOS

data. A user can interact with the framework at various levels from pointing
and clicking at a pre-existing GUI to writing a full library. This document is
structured so that each subsequent section documents what one needs to know
in order to interact at progressively lower levels of the framework.

2 First steps: adding Midad to a Job script

At a minimum, any user must know enough to add Midad initialization and
setup to a CINT script. Midad works with, but outside of, JobControl. All
communication from a Job script is done through the Mint (Midad Interface)
object which is given a JobC object. This puts Midad at the same level as you
are yourself with respect to JobControl.

2.1 Basic Midad initialization.

To create this Mint object one would have code similar to the following:

JobC* jc = new JobC;

Mint* mint = new Mint(*jc);

// more needed, including Job Path definition...

1



after this, one needs to use the JobC object to set up any path or to do any
other JobControl related configuration. As the above stands, there will be no
display. To create an instance of a display which comes with Midad you could
add the following lines:

PageDisplay* pd = mint->SpawnDisplay();

pd->AddPage("Multi");

This will create an instance of a display and add a “page” named “Multi”
to it. Details of what a Page is and how the name is used are given below.

2.2 Data prerequisites

Any Midad display will get at the data after a Job Path has run (except when
implementing a display from a JobCModule, see below). This means that if
you want to see a particular data object it must exist in the data stream. This
may seem obvious, but it must be stressed that a display should not do any
reconstruction but rather represent what is there already.
One particular thing worth noting is the difference between a CandDigit

and a CandStrip. A “digit” (digitization) is a common MINOS term with a
strict definition. Many other experiments would call it a “hit” but because of
two ended readout and multiplexing it does not directly correspond to an event
depositing energy in a particular strip. However humans like to visualize an
event as a serious of energy deposits (hits) in various strips. To do this, digits
need to be demultiplexed and have the two ended readout associated with a
strip object. In the offline frameowrk, this is done by running Algorithms which
demultiplex and whic produce CandStrips. This can be done by adding these
methods to your job path:

jc->Path.Create("somepath",

//...

"DigitListModule::Get "

"DigitListModule::Reco "

"DeMuxDigitListModule::Reco "

"StripSRListModule::Reco "

//...

);

Additionally, if a display is to display tracks or showers, at a minimum one
needs to run Algorithms that produce CandTracks and CandShowers.

2.3 A note about CINT/C++ scoping.

ROOT’s C++ interpreter (CINT) is very finicky about how objects are created.
One has to worry about usual C++ scoping, the desire to access any objects
outside of a script (ie, at the CINT prompt) as well as having any necessary
libraries loaded before any of their objects are encountered. Below is a fully
working but minimal Job script written in a style the author prefers.

2



2.4 A working, but minimal Job script example

// example_midad.C

// forward declare

class JobC;

class Mint;

// Global pointers so we can access them from

// the interactive CINT prompt after the script is run

JobC* jc = 0;

Mint* mint = 0;

// forward declare some helper functions.

void load_libs(void);

void do_it(void);

// this is the main function and must match the name of the file

void example_midad()

{

load_libs();

do_it();

}

// Load in any needed libs. This must be done in a separate

// scope from where objects from these libs are used.

void load_libs(void)

{

const char* lib[] = {

"libBubbleSpeak.so",

"libCandStripSR.so",

"libCandSliceSR.so",

"libCandTrackSR.so",

"libCandClusterSR.so",

"libMidadMultiPage.so",

"libMidadUserDisplay.so",

0

};

int l;

for (l=0; lib[l]; ++l) {

gSystem->Load(lib[l]);

}

}

// Set initialize Midad and setup the Job. Assumes input file

// has CandDigits and CandTracks

3



void do_it(void)

{

// Create JobC, Mint

jc = new JobC;

mint = new Mint(*jc);

// Create an instance of a display and add a "Multi" page.

PageDisplay* pd = mint->SpawnDisplay();

pd->AddPage("Multi");

// One can also create a page which is in a separate window:

// pd->SpawnSinglePage("Multi",800,600);

// Create a path with just a UserDisplay::Ana method

// which will create a second display

jc->Path.Create("default","UserDisplay::Ana");

jc->Input.Set("Streams=DaqSnarl,Cand");

jc->Path("default").Run(1);

}

// End example_midad.C

This will create a display with the “Multi” page in a tab due to the AddPage()
call. Commented out just below that is a SpawnDisplay() which would accom-
plish the same thing but with the page in its own window instead of sitting in
a tabbed page of the main display. In both cases, all connections between page
and display are the same.
As a side effect, the addition of UserDisplay::Ana to the job path will

create a separate window holding the provided example of a display created in
the context of a JobCModule.
After loading a few things from the menu you can expect to see something

like Figure 1.
The last call to Run(1) isn’t strictly needed, but is handy as Midad won’t

implicitly advance to the first record.

3 Overview of Midad design

Before going further it is useful to understand the basic design and individual
elements of the Midad framework.

3.1 Relationship between Midad and JobControl

As mentioned above, Midad relates to JobControl at the same “level” as you do
when you write Job scripts. Midad holds on to the JobC object given to the Mint

4



Figure 1: Screen shot of various graphical displays that come with the Midad
mini-framework.

5



object’s constructor. It then calls on this object for things such as navigating
the data stream (next, previous record) or running Job Paths. Although Midad
can be an active controller of the JobC object, it is a passive observer of any
changes (such as new data being read in to memory). In this way either Midad
or you can navigate the data stream and Midad will respond identically.
Midad should also be considered outside the context of a Job Path. This

means that in most cases, while a path is running, Midad is completely dormant
and should not interfere. Once the path is finished, JobControl will notify Midad
that a Path has run and new data is available for display. One case where this
doesn’t hold true is if you have linked in any Job Modules which talk to Midad
directly (eg, the provided UserDisplayModule example). However, in these cases
the only communication which is done is with a single TCanvas and not any
part of Midad proper.

3.2 Major elements

There are a few major elements of the Midad mini-framework that one should
be aware of before attempting to add on custom extensions. This section first
describes the layout of the source code and then details some important classes.
The code is layed out as a set of mini-packages, each to a directory. There are

strict non-cyclic dependencies between the mini-packages which are managed by
the order of the SUBDIRS variable in the top level GNUmakefile. The currently
existing mini-packages are listed from least to most dependent:

3.2.1 Util mini-package

The Util mini-package contains a small but important set of classes which have
nothing to do with event displays or even the offline software in general. The
most important are briefly described.

Undoable provides a base class for objects whos states can be changed and
changed back. This also includes a UndoHistory and related code imple-
menting an undo/redo stack.

Range is a templated class encapsulating a min and a max value. It provides
a signal to notify when either change. It is used extensively throughout
Midad.

RangeControl is also templated and is used to marry a Range with an UndoHistory.

NamedFactory along with base class NamedProxy provide a mechanism to
register a proxy class at link time. Later this proxy can be looked up for
the purpose of performing something on behalf of another class (usually
creating an instance). In Midad, this mechanism is used to register objects
which are dynamically linked in and provide some graphical element.

6



3.2.2 Gui mini-package

The Guimini-package provides wrappers for ROOT’s TG GUI classes (windows,
frames, buttons, sliders, etc). This was done to simplify the interface, handle
memory management and provide a robust signal/slot mechanism.

3.2.3 Base mini-package

The Base mini-package contains the main part of Midad. It has classes which
provide the mini-framework as well as those which are generically useful to many
types of displays.

Mint provides the interface between the Midad framework and the rest of the
world (ie, your Job script). In particular it gives methods to spawn dis-
plays, add “pages” (described next) are forward commands to the JobC
object. For compiled code it gives access to elements of the data such as
digits, tracks, time and charge ranges.

PageDisplay is one (currently the only) type of big-D Display. In the future
there may be a need for other types, in which case parts of this will be
abstracted into a base class. This display provides a menubar, buttonbar,
status bar and a central “notebook” with pages, one for each type of
graphical data representation.

PageABC is the base class for any thing that will go into a PageDisplay. It
has various virtual methods, some optional, which allows one to hook
in essentially any ROOT based graphics. Through these methods the
inheriting class is notified of new data, zoom or printing requests, etc. A
central frame is presented to the inheriting class to fill.

CanvasPage is a PageABC which simple fills the central frame with a TCanvas
that can be used by subsequent sub classes for canvas based displays.

UserCanvas is a CanvasPage and allows users to access the canvas either from
interpreted CINT code or from Job Modules (details below).

various there are various other classes which are useful but best explored in
the source.

3.2.4 MultiPage mini-package

The MultiPagemini-package provides a full example implementation of a “page”
that can be added to a PageDisplay. It inherits from UserCanvas and draws
a U vs. Z and V vs. Z view of the data. It creates its own menu in order to
provide a control on configuration and fulfills various duties of a page such as
being printable and responding to zooms. It is a very good place to look for
inspiration on creating your own page. Details on how to write your own page
are given below.

7



3.2.5 UserDisplay mini-package

The UserDisplay mini-package provides a JobCModule which tries to be the
Midad version of the Demo/UserAnalysis example module. It shows how you
can integrate your own display into Midad from a JobCModule. This is probably
the easiest way to incorporate a display into midad, but doesn’t allow for as
much integration as writing a full Page. Details on how to do this are given
below.

4 Writing a display in the context of a JobC-
Module

To create a display in the context of a JobCModule one makes typically makes
use of the UserCanvas page. You can also create and register a full blown page
from a JobCModule, but it is much easier to simply do this from a job script.
As stated above the UserDisplayModule from Midad’s UserDisplay mini-

package provides a fairly full featured example. This section will walk through
the highlights of that class.
There are no particular requirements on a JobCModule which provides a

display other than those demanded by all JobCModules. In this example we
implement the Ana() method as well as some private helper methods:

class UserDisplayModule : public JobCModule

{

public:

// ... ctor/dtor

virtual void BeginJob();

JobCResult Ana(const MomNavigator *mom);

private:

void BuildDisplay(const MomNavigator *mom);

void UpdateDisplay(const MomNavigator *mom);

void AddTrack(const CandTrackHandle* cth);

// ... private data

};

The responsibilities of each of these methods are described. You are of course
free to structure things differently. This should be taken as just one way to do
it.

BeginJob() is called once. In here BuildDisplay() is called in which a con-
nection with Midad is made via the global gMint pointer (if non-zero), a
TCanvas requested and filled.

Ana() This gets called once every time the path is run. In here, previously ex-
isting graphical elements (if the BuildDisplay() succeeded) are modified
to fit the current event. Finally, one beats on ROOT to convince it that,
yes, the canvas has been modified.

8



5 Writing a display in the context of a Job script

To create a display from a Job script one uses a UserCanvas like in the above
case. However, here, one gets back a pointer to a class called CanvasSignals

in order to respond to, eg, changes in the data. This code shows the process:

// Create JobC and Mint objects like normal

jc = new JobC;

mint = new Mint(*jc);

// Add ‘‘Multi’’ display which comes with Midad

PageDisplay* pd = mint->SpawnDisplay();

pd->AddPage("Multi");

// Add a ‘‘UserCanvas’’ and save the resulting CanvasSignals

CanvasSignals* cs = pd->SpawnSinglePage("UserCanvas",200,200);

The CanvasSignals provides a set of Rt signals to which you can connect in-
terpreted methods. For example, the main signal one would most likely connect
to is “Update(const MomNavigator*)”. Assume you have some function called
“redraw()” that redraws the latest event into the canvas, you would connect
like:

void redraw(const MomNavigator*)

{

...

}

...

cs->Connect("Update(const MomNavigator*)",0,0,"redraw(const MomNavigator*)");

Where “cs” is the pointer to the CanvasSignals one got back from creat-
ing the “UserCanvas”. Note that in compiled code it is preferable to use the
libsigc++ signals provided by this class instead of the Rt ones.
The CanvasSignals object also gives access to the TCanvas via the CanvasSignals::GetCanvas()

method. These two features allow essentially arbitrary displays to be created
entirely in interpreted code. However, since much of Midad is hidden from in-
terpreted code due to CINT’s inability to handle templates well, some Midad
features will not be accessable.
A full working example is provided with Midad in the macros/test user canvas.C

script.

6 Writing a full blown Page

To gain full access to useful Midad features one can write a concrete Page class.
This is preferable for a few reasons. It gives you full access to the amenities
of C++ and Midad that comes with not using interpreted code and it also lets
others use your work in a way that fits in with the Midad mini-framework better.

9



Two write your own Page you start by subclassing another Page, either the
base class PageABC or some pre-existing one (such as CanvasPage which provides
a TCanvas for drawing and takes care of printing for you).
As mentioned above, the example page MultiPage which comes with Midad

in a mini-package of the same name is a good place to look for how to write
your own page.
The primary methods one needs to provide are found in the Base/PageABC.h

abstract base class header file. The main method that need implementation is

virtual TObject* Init(Mint* mint, PageDisplay* pd, GuiBox& box) = 0;

It is through this method that you get access to the Mint object (from where
all access to the data comes from) as well as the parent display and the GuiBox
in which you can draw more Gui elements.
Additionally, you can implement these two methods

virtual void Clear() {}

virtual void Update() {}

to be notified just before new data is read in and just after, respectively.
Besides the other optional methods, you should have code like the following

in your implementation file:

#include <Midad/Base/PageProxy.h>

...

static PageProxy<MyPageType> gsMyPageProxy("MyPageName");

...

This registers your page, in this example of type MyPageType and named
"MyPageName", with the NamedFactory for pages. This allows Midad to create
an instance of you page by name (remember PageDisplay::AddPage() above?).

6.1 Writing a user display based on a CanvasPage

As mentioned above one of the available entries into developing your own display
is to subclass CanvasDisplay which provides a TCanvas in which to draw.
Besides the complex example of MultiPage there is the simpler one called

“CheezyPage” can be used as a starting point for writing your own page. It
embeds the venerable CheezyDisplay into the Midad framework. All the actual
drawing is done by the CheezyDisplay object.
This class also provides an example of how you can make use of the GUI

elements Midad provides in order to allow for configuration and other interaction
between code and human.

10


